

SPACE SHUTTLE PAYLOAD JSC-20052 VOLUME 3

DESIGN AND DEVELOPMENT

(NASA-TM+108761) SPACE SHUTTLE PAYLDAS DESIGN AND DEVELOPMENT. VOLUME B: FLIGHT CESIGN GUIDELINES AND REQUIPEMENTS (NASA) 47 p

N94-70367

Unclas

29/16 0167299

FLIGHT DESIGN GUIDELINES AND REQUIREMENTS

Lyndon B. Johnson Space Center

.

(

DESIGN AND DEVELOPMENT

CONTENTS

SECTION			PAGE
	FLIGHT DESIGN PROCESS	***************************************	5
	TYPICAL MISSION OVERVIEW		9
	STANDARD MISSION CRITERIA		11
	TYPICAL FLIGHT PROFILE	•••••	15
	FLIGHT EXPERIENCE		40

142

PRECEDING PAGE BLANK NOT FILMED

			-	•
			•	9
en de la companya de La companya de la co				
				•
				•

- ▶ FLIGHT DESIGN PROCESS
 - TYPICAL MISSION OVERVIEW
 - STANDARD MISSION CRITERIA
 - TYPICAL FLIGHT PROFILE
 - FLIGHT EXPERIENCE
 - SPACECRAFT FLIGHT DESIGN REQUIREMENTS

PRECEDING PAGE BLANK NOT FILMED

MENKONAU RIN

- FLIGHT DESIGN PROCESS
 - FLIGHT DESIGN IS THE PREPARATION OF TRAJECTORY, ATTITUDE, AND CONSUMABLES PROFILES FOR A SPECIFIC FLIGHT. THERE ARE TWO MAJOR ELEMENTS -- CONCEPTUAL FLIGHT DESIGN AND OPERATIONAL FLIGHT DESIGN
 - CONCEPTUAL FLIGHT DESIGN
 - EARLY DATA BASE FOR CUSTOMER AND FOR NATIONAL SPACE TRANSPORTATION SYSTEM OPERATIONS AND SYSTEMS ORGANIZATIONS PLANNING AND ASSESSMENT
 - BEGINS 14-1/2 MONTHS PRIOR TO FLIGHT
 - CONCEPTUAL FLIGHT PROFILE COMPLETED 12-1/2 MONTHS PRIOR TO FLIGHT
 - SUPPORTS CARGO INTEGRATION REVIEW 9 MONTHS PRIOR TO FLIGHT

FLIGHT DESIGN PROCESS (CONT)

- OPERATIONAL FLIGHT DESIGN
 - FINAL PREFLIGHT DESIGN SUPPORTS GROUND-BASED AND FLIGHT SYSTEMS RECONFIGURATION. THIS INCLUDES DATA FOR
 - RANGE SAFETY
 - CONSUMABLES LOADING
 - FLIGHT SOFTWARE
 - SHUTTLE MISSION SIMULATOR
 - MISSION CONTROL CENTER
 - "LIGHT DATA FILE
 - BEGINS 8-1/2 MONTHS PRIOR TO FLIGHT
 - OPERATIONAL FLIGHT PROFILE COMPLETED 5 MONTHS PRIOR TO FLIGHT

FLIGHT DESIGN PROCESS (CONT)

- OPERATIONAL FLIGHT DESIGN (CONT)
 - SUPPORTS
 - FLIGHT OPERATIONS REVIEW 4 MONTHS PRIOR TO FLIGHT
 - INTEGRATED SIMULATIONS STARTING 10 WEEKS PRIOR TO FLIGHT
 - FLIGHT READINESS REVIEW 2 WEEKS PRIOR TO FLIGHT
 - FLIGHT
- EARLY CONCEPTUAL FLIGHT DESIGN AVAILABLE, IF REQUIRED, AS AN OPTIONAL SERVICE
 - ESTABLISHES MISSION FEASIBILITY
 - PROVIDES FLIGHT PROFILE DATA FOR SPACECRAFT DESIGN AND EVALUATION

- FLIGHT DESIGN PROCESS
- TYPICAL MISSION OVERVIEW
 - STANDARD MISSION CRITERIA
 - TYPICAL FLIGHT PROFILE
 - FLIGHT EXPERIENCE
 - SPACECRAFT FLIGHT DESIGN REQUIREMENTS

DESIGN AND DEVELOPMENT

NASA

TYPICAL MISSION OVERVIEW

OUTLINE

- FLIGHT DESIGN PROCESS
- TYPICAL MISSION OVERVIEW
- **▶** STANDARD MISSION CRITERIA
 - TYPICAL FLIGHT PROFILE
 - FLIGHT EXPERIENCE
 - SPACECRAFT FLIGHT DESIGN REQUIREMENTS

STANDARD MISSION CRITERIA KENNEDY SPACE CENTER LAUNCH

S-84-01434 Rev 1

SHARED FLIGHTS

- ORBITAL INCLINATION 28.45° AND 57.0°
- INITIAL ORBIT ALTITUDE 160 N. MI. (296 km) CIRCULAR
- LAUNCH WINDOW (FOR 28.45°)
 - TWO LAUNCH WINDOWS CENTERED NEAR NOON AND MIDNIGHT GREENWICH MEAN TIME
 - LAUNCH WINDOW DURATION 2 HRS FOR EACH WINDOW
- AT LEAST 80% OF STANDARD LAUNCH WINDOW SHOULD BE USABLE
- SPACECRAFT SHOULD BE COMPATIBLE WITH DEPLOYMENT ON 2 CONSECUTIVE ORBITAL REVOLUTIONS WITH ANOTHER OPPORTUNITY AT LEAST 12 HRS LATER

DEDICATED FLIGHTS

- ◆ ORBITAL INCLINATION 28.45° AND 57.0°
- INITIAL ORBIT ALTITUDE 160 N. MI. (296 km) CIRCULAR
- LAUNCH WINDOW DURATION 1 HR

GEOSYNCHRONOUS TRANSFER ORBIT GEOMETRY FOR STANDARD SHARED FLIGHT LAUNCH WINDOW

- LAUNCH WINDOW FOR SHARED FLIGHTS COMPATIBLE WITH CLASS OF SPACECRAFT TO BE PLACED IN GEOSYNCHRONOUS ORBIT
- THESE SPACECRAFT REQUIRE THE SUN AND EARTH PARKING ORBIT NODAL CROSSINGS TO BE APPROXIMATELY ALONG TRANSFER ORBIT LINE OF APSIDES
- DUE EAST LAUNCH RESULTS IN LIFT-OFF APPROXIMATELY 90° FROM NODAL CROSSINGS; THEREFORE EARLY MORNING OR LATE EVENING LOCAL TIME LAUNCH IS REQUIRED
- FIRST NODAL CROSSING FOR LAUNCH FROM KENNEDY SPACE CENTER IS NEAR GREENWICH MERIDIAN; THEREFORE LIFT-OFF IS NEAR NOON OR MIDNIGHT GREENWICH MEAN TIME (GMT)

GEOSYNCHRONOUS TRANSFER ORBIT GEOMETRY FOR STANDARD SHARED FLIGHT LAUNCH WINDOW

NOON GMT LAUNCH (MORNING EASTERN STANDARD TIME)

MIDNIGHT GMT LAUNCH
(EVENING EASTERN STANDARD TIME)

OUTLINE

- FLIGHT DESIGN PROCESS
- TYPICAL MISSION OVERVIEW
- STANDARD MISSION CRITERIA
- TYPICAL FLIGHT PROFILE
 - FLIGHT EXPERIENCE
 - SPACECRAFT FLIGHT DESIGN REQUIREMENTS

MISSION OBJECTIVES

PRIMARY OBJECTIVES

- DEPLOY THREE SPACECRAFT WITH UPPER STAGES FOR EVENTUAL POSITIONING IN GEOSYNCHRONOUS ORBIT
- DEPLOY, RETRIEVE, AND RETURN TO EARTH FREE-FLYING SPACECRAFT

SECONDARY OBJECTIVES

- MATERIALS PROCESSING EXPERIMENTS
- STUDENT EXPERIMENTS
- GET-AWAY SPECIALS

DESIGN AND DEVELOPMENT

PROFILE OVERVIEW

LAUNCH DATE	AUGUST 9
LAUNCH TIME	12:43 GMT (8:43 EDT)
LAUNCH WINDOW	12:43 - 12:55 GMT (12 MIN)
SPACE SHUTTLE MAIN ENGINE	(=,
POWER LEVEL	104/104/109%
ORBITER	OV-103
NO. OF CREWMEMBERS	5
NO. OF CRYOGENIC TANK SETS	4
FLIGHT DURATION	7 DAYS + 2 DAYS EXTENSION
ORBIT INCLINATION	28.45°
ORBITAL ALTITUDE, H _p /HA, N. MI. (km)	
INITIAL ORBIT	160/160 (296/296)
 POST-SPACECRAFT 1 SEPARATION 	(====,
BURN	160/166 (296/307)
 POST-SPACECRAFT 2 SEPARATION 	,
BURN	160/173 (296/320)
 POST-SPACECRAFT 3 SEPARATION 	•
BURN	160/179 (296/332)
• ORBIT ADJUST	155/160 (287/296)
	•

PROFILE OVERVIEW (CONT)

• INJECTION OPPORTUNITIES (PRIMARY/BACKUP)

• SPACECRAFT-1 7A/23A

• SPACECRAFT-2 18A/49A

• SPACECRAFT-3 34A/49A

• LANDING SITES

• END OF MISSION

- PRIME

- ALTERNATE

• RETURN TO LAUNCH SITE

• TRANSATLANTIC ABORT

ABORT ONCE AROUND

- PRIME

- ALTERNATE

KENNEDY SPACE CENTER EDWARDS AIR FORCE BASE KENNEDY SPACE CENTER

REMILES OF AGE GENTER

DAKAR, SENEGAL

EDWARDS AIR FORCE BASE

NORTHRUP STRIP

S-84-01435

• FLIGHT DAY 1

MAJOR ACTIVITIES SUMMARY

- ASCENT TO ORBIT AND POSTINSERTION RECONFIGURATION
- SPACECRAFT NO. 1 DEPLOYMENT AND TRANSFER ORBIT INJECTION

• FLIGHT DAY 2

- SPACECRAFT NO. 2 DEPLOYMENT AND TRANSFER ORBIT INJECTION
- SPACECRAFT NO. 1 BACKUP DEPLOYMENT AND INJECTION OPPORTUNITY

• FLIGHT DAY 3

- SPACECRAFT NO. 3 DEPLOYMENT AND TRANSFER ORBIT INJECTION
- MATERIALS PROCESSING

• FLIGHT DAY 4

- SPACECRAFT NO. 2 AND 3 BACKUP DEPLOYMENT AND INJECTION OPPORTUNITY
- ORBIT ADJUST MANEUVER TO CONTROL LANDING LIGHTING AND CROSSRANGE
- FREE-FLYING DEPLOYMENT

MAJOR ACTIVITIES SUMMARY (CONT)

- FLIGHT DAY 5
 - MATERIALS PROCESSING
 - STUDENT EXPERIMENTS
 - MANEUVER TO INITIATE RENDEZVOUS WITH FREE-FLYING SPACECRAFT
- FLIGHT DAY 6
 - FREE-FLYING SPACECRAFT RENDEZVOUS AND RETRIEVAL
 - STUDENT EXPERIMENTS
- FLIGHT DAY 7
 - CABIN STOWAGE FOR RETURN TO EARTH
- FLIGHT DAY 8
 - RETURN TO EARTH
- FLIGHT DAY 9 (IF REQUIRED)
 - FLIGHT EXTENSION DAY
- FLIGHT DAY 10 (IF REQUIRED)
 - FLIGHT EXTENSION DAY

DESIGN AND DEVELOPMENT

S-84-01288

TYPICAL CREW ACTIVITY PLAN

GEOSYNCHRONOUS TRANSFER ORBIT INJECTION NODES

DESIGN AND DEVELOPMENT

DESIGN AND DEVELOPMENT

DESIGN AND DEVELOPMENT

SPACECRAFT DEPLOYMENT AND SEPARATION PROFILE

- MINIMIZES DISTURBANCES TO DEPLOYED SPACECRAFT
- PROTECTS ORBITER BY
 - MINIMIZING EROSION EFFECTS OF UPPER-STAGE EXHAUST ON ORBITER EXTERNAL SURFACES
 - ENSURING INCREASING SEPARATION DISTANCE DURING UPPER-STAGE THRUSTING
 - ENSURING ADEQUATE SEPARATION DISTANCE
 TO MINIMIZE POTENTIAL FOR DAMAGE DUE TO UPPER-STAGE
 EXPLOSIVE POTENTIAL

SPACECRAFT DEPLOYMENT AND SEPARATION

- DEPLOYMENT
 - SPRING EJECTION SYSTEM
 - REMOTE MANIPULATOR SYSTEM
- INITIAL SEPARATION
 - IMPULSE PROVIDED BY
 - SPRING EJECTION SYSTEM
 - ORBITER REACTION CONTROL SYSTEM
 - RELATIVE SPEED
 - RECONTACT AND CREW MONITORING CONSIDERATIONS AT LEAST 0.5 FT/SEC (0.15 m/SEC)
 - SPACECRAFT WITH UPPER STAGES GREATER THAN 1.0 FT/SEC (0.3 m/SEC)
 - DIRECT VISUAL OBSERVATION UNTIL 200 FT (61 m) SEPARATION
 - SPACECRAFT ATTITUDE CONTROL THRUSTERS INHIBITED UNTIL SAFE SEPARATION DISTANCE

SPACECRAFT DEPLOYMENT AND SEPARATION (CONT)

- FINAL SEPARATION MANEUVER FOR SPACECRAFT WITH UPPER STAGES
 - SEPARATION IMPULSE PROVIDED BY ORBITAL MANEUVERING SYSTEM
 - ORBITER BEHIND AND ABOVE UPPER STAGE AT STAGE IGNITION
 - 10 TO 15 N. MI. (19 TO 28 km) DISTANCE AT UPPER STAGE IGNITION

TYPICAL SATELLITE DEPLOYMENT SEQUENCE

DESIGN AND DEVELOPMENT

DEPLOYED SPACECRAFT RELATIVE MOTION

S-84-01283 Rev 1

N/S/

INITIAL SEPARATION FOR RMS DEPLOYMENT

S-84-01284 Rev 1

SPACECRAFT RENDEZVOUS PROFILE

FAR-FIELD RENDEZVOUS PROFILE

FAR-FIELD PROFILE

DESIGN AND DEVELOPMENT

S-84-01898

SPACECRAFT RENDEZVOUS PROFILE

DAY OF RENDEZVOUS PROFILE

APPROACH TO GRAPPLE

DEPLOYMENT, RENDEZVOUS, AND RETRIEVAL CONSIDERATIONS S-84-02072

- SPACECRAFT GROUND TRACKING
 - SPACECRAFT MUST BE TRACKABLE BY GROUND-BASED SYSTEMS FOR RENDEZVOUS TARGETING
- SPACECRAFT TRACKING BY ORBITER
 - CROSS-SECTION AREA GREATER THAN 1 SQUARE METER IN ALL ATTITUDES FOR ADEQUATE RENDEZVOUS RADAR TRACKING
 - GREATER THAN 3RD MAGNITUDE STAR AT RANGE OF 250 N.MI. (463 km) FOR STAR TRACKER OPERATION
 - REFLECTORS OR DISTINCTIVE MARKINGS DESIRABLE FOR VISUAL ATTITUDE DETERMINATION

NASA

DEPLOYMENT, RENDEZVOUS, AND RETRIEVAL (CONT)

- FOR SPACECRAFT ACTIVE RENDEZVOUS, SPACECRAFT
 - SHOULD BE ABLE TO MAKE ACCURATE ORBIT CHANGES IN 24 HRS
 - SHOULD PROVIDE COMMAND LINK TO ORBITER VIA PAYLOAD INTERROGATOR
 - SHOULD BE CAPABLE OF SUSTAINING A SAFE, RETRIEVABLE CONFIGURATION FOR AT LEAST 3 HRS. THAT IS, IF SOLAR PANELS MUST BE RETRACTED OR JETTISONED, ADEQUATE BATTERY POWER MUST BE AVAILABLE
 - SHOULD HAVE ADEQUATE ATTITUDE CONTROL AUTHORITY TO FLY AT RELATIVELY LOW ALTITUDES, APPROXIMATELY 170 N.MI. (315 km) TO MAXIMIZE NSTS PERFORMANCE
- SPACECRAFT APPROACH AND GRAPPLE
 - SPACECRAFT DRAWINGS AND/OR TEST MODELS MUST BE EXACT SO THAT APPROACH AND GRAPPLE DEVICES AND CREW TRAINING CAN BE DEVELOPED
 - GRAPPLE FIXTURE ACCESSIBILITY MAY REQUIRE MULTIPLE GRAPPLE FIXTURES

DEPLOYMENT, RENDEZVOUS, AND RETRIEVAL (CONT)

- BEST SPACECRAFT ATTITUDE FOR APPROACH AND GRAPPLE IS LOCAL VERTICAL, LOCAL HORIZONTAL (ORBITAL RATE), BUT INERTIAL ATTITUDE HOLD IS ACCEPTABLE
- GRAPPLE WITH SPACECRAFT RATE UP TO 0.3°/SEC ABOUT AN AXIS NORMAL TO GRAPPLE FIXTURE SHAFT
- NSTS WILL ASSIST CUSTOMER IN DEFINING GRAPPLE FIXTURE LOCATION AND ORIENTATION BY REMOTE MANIPULATOR SYSTEM REACH AND CLEARANCE ANALYSIS

NASA

DESIGN AND DEVELOPMENT

S-84-01900

EXHAUST PLUME EXPOSURE DURING APPROACH DYNAMIC PRESSURE

DESIGN AND DEVELOPMENT

NASA

TYPICAL EXHAUST PLUME IMPINGEMENT AFFECTS RETRIEVAL OPERATION

TRANSLATION

IMPULSE

LB-SEC

1 TO 8

(N-SEC)

(4.4 TO 35.6)

PLUME TORQUE

IMPULSE

FT-LB-SEC

0.3 TO 6

(N-m-SEC)

(0.4 TO 8.1)

CONTAMINATION

 (g/cm^2)

 $17 \times 10^{-8} \text{ TO } 50 \times 10^{-8}$

- FLIGHT DESIGN PROCESS
- TYPICAL MISSION OVERVIEW
- STANDARD MISSION CRITERIA
- TYPICAL FLIGHT PROFILE
- **▶** FLIGHT EXPERIENCE
 - SPACECRAFT FLIGHT DESIGN REQUIREMENTS

FLIGHT EXPERIENCE

S-84-01446 Rev 1

LIFT-OFF TIME

- EIGHT ON TIME ONCE THE COUNTDOWN WAS INITIATED
- FIRST NSTS FLIGHT TWO DAY DELAY, RECYCLE ON TIME
- ONE 10-MIN LATE SYSTEMS VERIFICATION
- ONE 17-MIN LATE LAUNCH SITE WEATHER
- ONE 2-MONTH DELAY MAIN ENGINE CONTROLLER PROBLEMS

INITIAL ORBIT ACCURACY

- ALTITUDE DISPERSION
 - APOGEE TYPICALLY LESS THAN 1.0 N. MI. (1.85 km)
 - PERIGEE TYPICALLY LESS THAN 0.5 N. MI. (0.93 km)
- ORBIT PLANE WITHIN 0.03° TO 0.04°

● EIGHT SPACECRAFT WITH UPPER STAGE SUCCESSFULLY DEPLOYED

- SEVEN DEPLOYED ON PRIME OPPORTUNITY WITH ONE DELAYED TWO DAYS AT CUSTOMER REQUEST
- DEPLOYED WITHIN 1 SEC OF PLANNED TIME
- DEPLOYED WITHIN 0.5° OF PLANNED ATTITUDE

NASA

FLIGHT EXPERIENCE (CONT)

- FLIGHT DURATION
 - TEN FLIGHTS PLANNED DURATION OR LONGER
 - ONE EARLY TERMINATION (DURING FLIGHT TEST PROGRAM)
 - TWO FLIGHTS EXTENDED ONE DAY
 - ADDITIONAL SCIENTIFIC RETURN
 - ACCOMPLISH MISSION OBJECTIVES
 - THREE FLIGHTS EXTENDED TO AVOID UNFAVORABLE WEATHER CONDITIONS AT PRIME LANDING SITE (1 DAY, 2 ORBITS, AND 1 ORBIT)
- NAVIGATION UNCERTAINTY AT UPPER-STAGE DEPLOYMENT LESS THAN 1 N. MI. (1.85 km) DOWNTRACK
- SUCCESSFULLY DEMONSTRATED FOLLOWING CAPABILITY
 - PROXIMITY OPERATIONS WITH FREE-FLYING SPACECRAFT
 - SPACECRAFT DEPLOYMENT AND RETRIEVAL WITH REMOTE MANIPULATOR SYSTEM
 - RETRIEVAL, REPAIR, AND REDEPLOYMENT OF A DISABLED SPACECRAFT
 - ACCURATE GROUNDTRACK CONTROL
 - NIGHT LAUNCH AND LANDING OPERATIONS

- FLIGHT DESIGN PROCESS
- TYPICAL MISSION OVERVIEW
- STANDARD MISSION CRITERIA
- TYPICAL FLIGHT PROFILE
- FLIGHT EXPERIENCE
- ▶ SPACECRAFT FLIGHT DESIGN REQUIREMENTS

SPACECRAFT FLIGHT DESIGN REQUIREMENTS

- PHYSICAL CHARACTERISTICS
 - MASS PROPERTIES
 - CONTROL WEIGHT
 - INERTIAS
 - PHYSICAL DIMENSIONS
 - REMOTE MANIPULATOR ARM GRAPPLE FIXTURE LOCATION
- ORBIT REQUIREMENTS NOMINAL AND ACCEPTABLE TOLERANCE
 - ALTITUDE
 - INCLINATION
- LAUNCH WINDOW
 - RIGHT ASCENSION OF ASCENDING NODE FOR LAUNCH DATE AND SUBSEQUENT 60-DAY INTERVAL

SPACECRAFT FLIGHT DESIGN REQUIREMENTS (CONT)

S-84-01460 Rev 1

- DEPLOYMENT REQUIREMENTS
 - ACCEPTABLE LONGITUDES
 - TIMING AND POINTING
- THERMAL CONTROL REQUIREMENTS
 - ORBITER ATTITUDE CONSTRAINTS
 - COOLING REQUIREMENTS
 - COOLANT INTERFACES (CABIN AIR, WATER LOOP, FREON LOOP)
 - COOLING LOADS BY MISSION PHASE
- ELECTRICAL POWER REQUIREMENTS
 - PEAK POWER
 - TOTAL ENERGY
 - POWER PROFILE BY MISSION PHASE
- COMMUNICATIONS REQUIREMENTS
 - TIMING AND DURATION
 - COMMUNICATIONS MODES

- SPACECRAFT FLIGHT DESIGN REQUIREMENTS (CONT)
 - **ATTITUDE AND POINTING REQUIREMENTS**
 - DEPLOYMENT AND SEPARATION REQUIREMENTS
 - DEPLOYMENT MECHANISM
 - VELOCITY INCREMENT
 - UPPER-STAGE IGNITION TIME AND ATTITUDE